METRIC SPACES: FINAL EXAM 2018

DOCENT: A. V. KISELEV

Problem 1 (10%). Let $\varepsilon > \varepsilon' > 0$. In a metric space $(\mathfrak{X}, d_{\mathfrak{X}})$, can an open disk B_{ε} of larger radius be entirely and strictly contained, $B_{\varepsilon} \subsetneq B_{\varepsilon'}$, is an open disk $B_{\varepsilon'}$ of smaller radius? (state and prove, e.g., by example)

Problem 2 (20%). Prove that the diameter of every compact metric space $(\mathfrak{X}, d_{\mathfrak{X}})$ is finite.

(By definition, diam(\varnothing) = 0 and diam(S) = $\sup_{x,y\in S} d_{\mathfrak{X}}(x,y)$ for a non-empty bounded set $S\subseteq \mathfrak{X}$.)

Problem 3 (20%). Let \mathcal{X} be a space such that every continuous function $f: \mathcal{X} \to \mathbb{R}$ has the following property: if a < c < b, f(x) = a, and f(y) = b, then there exists $z \in \mathcal{X}$ such that f(z) = c. Prove \mathcal{X} is connected.

(The set \mathbb{R} is equipped with the standard Euclidean topology.)

Problem 4 (30%=15%+15%). Suppose for every $n \in \mathbb{N}$ that V_n is a non-empty closed subset of a sequentially compact space \mathfrak{X} and $V_n \supseteq V_{n+1}$. Prove that

$$\bigcap_{n=1}^{+\infty} V_n \neq \varnothing.$$

• Is this intersection always non-empty if the hypothesis of sequential compactness is discarded? (state and prove, e.g., by counterexample)

Problem 5 (20%). Solve for x(s) the integral equation,

$$x(s) = \frac{1}{2} \int_0^1 s \cdot t \, x(t) \, dt + \frac{5}{6} s,$$

by consecutive approximations starting from $x_0(s) = 0$. (In the end, verify by a direct substitution that the solution which you have found satisfies the equation.)

Date: April 4, 2018. Do not postpone your success until June 27. GOOD LUCK!